博客
关于我
Objective-C实现markov chain马尔可夫链算法(附完整源码)
阅读量:792 次
发布时间:2023-02-19

本文共 3172 字,大约阅读时间需要 10 分钟。

Objective-C实现马尔可夫链(Markov Chain)算法的示例代码如下:

#import 
@interface MarkovChain : NSObject- (instancetype)initWithTransitionMatrix:(NSDictionary
*)matrix;- (NSDictionary
*>*)computeProbabilityDistributionForState:(NSString*)state;- (NSDictionary
*>*)computeProbabilityDistributionForInitialState;- (NSDictionary
*>*)computeProbabilityDistributionOverTime;- (NSDictionary
*>*)computeProbabilityDistributionForSteps:(NSInteger)steps;- (NSDictionary
*>*)computeProbabilityDistributionForStep:(NSInteger)step;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeries:(NSArray
*)timeSeries;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeriesWithStep:(NSInteger)step;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeriesWithSteps:(NSInteger)steps;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeriesWithStepsAndInitialState:(NSDictionary
*)initialState;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeriesWithStepsAndInitialStateWithStep:(NSInteger)step;- (NSDictionary
*)simulateChainWithInitialState:(NSDictionary
*)initialState;- (NSDictionary
*)simulateChainWithInitialStateAndSteps:(NSDictionary
*)initialState withSteps:(NSInteger)steps;- (NSDictionary
*)simulateChainWithInitialStateAndStepsAndStep:(NSDictionary
*)initialState withStep:(NSInteger)step;- (NSDictionary
*)simulateChainWithInitialStateAndStepsAndTimeSeries:(NSDictionary
*)initialState withTimeSeries:(NSArray
*)timeSeries;- (NSDictionary
*)simulateChainWithInitialStateAndStepsAndTimeSeriesWithStep:(NSDictionary
*)initialState withStep:(NSInteger)step;- (NSDictionary
*)simulateChainWithInitialStateAndStepsAndTimeSeriesWithSteps:(NSDictionary
*)initialState withSteps:(NSInteger)steps;@end

在这个项目中,我们创建了一个名为MarkovChain的类,用于实现马尔可夫链算法。该类通过提供一个状态转移矩阵,可以计算出马尔可夫链模型下的概率分布。以下是类的主要方法:

  • initWithTransitionMatrix:

    • 初始化马尔可夫链模型,接受一个状态转移矩阵matrix作为参数。
    • 矩阵的键表示当前状态,值表示下一个状态的转移概率。
  • computeProbabilityDistributionForState:

    • 根据指定的状态计算其概率分布。
    • 适用于单步转移概率计算。
  • computeProbabilityDistributionForInitialState:

    • 计算初始状态下的概率分布。
    • 假设初始分布已知。
  • computeProbabilityDistributionOverTime:

    • 计算状态概率随时间变化的情况。
    • 适用于长期状态转移分析。
  • computeProbabilityDistributionForSteps:

    • 计算指定步数下的概率分布。
    • 适用于多步转移路径分析。
  • computeProbabilityDistributionForStep:

    • 计算单独指定步数下的概率分布。
  • computeProbabilityDistributionForTimeSeries:

    • 计算基于时间序列的概率分布。
    • 适用于时间序列数据分析。
  • computeProbabilityDistributionForTimeSeriesWithStep:

    • 计算基于指定步数的时间序列概率分布。
  • computeProbabilityDistributionForTimeSeriesWithSteps:

    • 计算基于指定步数的时间序列概率分布。
  • computeProbabilityDistributionForTimeSeriesWithStepsAndInitialState:

    • 计算基于指定步数和初始状态的时间序列概率分布。
  • computeProbabilityDistributionForTimeSeriesWithStepsAndInitialStateWithStep:

    • 计算基于指定步数、初始状态和单步转移的时间序列概率分布。
  • simulateChainWithInitialState:

    • 模拟马尔可夫链随机过程,返回最终状态分布。
  • simulateChainWithInitialStateAndSteps:

    • 模拟马尔可夫链随机过程,指定初始状态和步数。
  • simulateChainWithInitialStateAndStepsAndStep:

    • 模拟马尔可夫链随机过程,指定初始状态、步数和单步转移。
  • simulateChainWithInitialStateAndStepsAndTimeSeries:

    • 模拟基于时间序列的马尔可夫链随机过程。
  • simulateChainWithInitialStateAndStepsAndTimeSeriesWithStep:

    • 模拟基于指定步数和时间序列的马尔可夫链随机过程。
  • simulateChainWithInitialStateAndStepsAndTimeSeriesWithSteps:

    • 模拟基于指定步数和时间序列的马尔可夫链随机过程。
  • 该类方法可以灵活组合,适用于各种马尔可夫链模型的分析需求。

    转载地址:http://tlnfk.baihongyu.com/

    你可能感兴趣的文章
    NPM酷库052:sax,按流解析XML
    查看>>
    npm错误 gyp错误 vs版本不对 msvs_version不兼容
    查看>>
    npm错误Error: Cannot find module ‘postcss-loader‘
    查看>>
    npm,yarn,cnpm 的区别
    查看>>
    NPOI之Excel——合并单元格、设置样式、输入公式
    查看>>
    NPOI初级教程
    查看>>
    NPOI利用多任务模式分批写入多个Excel
    查看>>
    NPOI在Excel中插入图片
    查看>>
    NPOI将某个程序段耗时插入Excel
    查看>>
    NPOI格式设置
    查看>>
    NPOI设置单元格格式
    查看>>
    Npp删除选中行的Macro录制方式
    查看>>
    NR,NF,FNR
    查看>>
    nrf24l01+arduino
    查看>>
    nrf开发笔记一开发软件
    查看>>
    nrm —— 快速切换 NPM 源 (附带测速功能)
    查看>>
    nrm报错 [ERR_INVALID_ARG_TYPE]
    查看>>
    NS3 IP首部校验和
    查看>>
    NSDateFormatter的替代方法
    查看>>
    NSError 的使用方法
    查看>>